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This paper deals with the theoretical potential distribution within a flow-by parallelepipedic porous 
electrode operating in limiting current conditions in a two-compartment  electrolytic cell. The model 
takes into account the influence of  the counter-electrode polarization and of  the separator ohmic 
resistance. The results show that the design of  the porous electrode requires the knowledge of  the 
solution potential distribution within the whole cell volume. 

Nomenclature 

ac specific surface area per unit volume of electrode 
C0 entrance concentration (y = 0) 
Cs exit concentration (y = Y0) 
E electrode potential (= ~bM -- ~bs) 
E0 equilibrium electrode potential 
F Faraday number 
i current density 
/76 mean mass transfer coefficient 
K parameter [ae.jFioa/(7~RT)] 112 
L porous electrode thickness 
n number of terms in Fourier serials 
P specific productivity 
Qv volumetric flow-rate 

mean flow velocity based on empty channel 
V constant potential 
VR electrode volume 
x thickness variable 
X conversion 
y length variable 

Y0 porous electrode length 
z number of electrons in the electrochemical 

reaction 

Greek symbols 
c~ parameter [=zF]~daeCo/Tc ] 
fl parameter [---- F~dae/~] 
7 ionic electrolyte conductivity in pores 
q5 s solution potential 
~bM matrix potential (~bM = constant) 
2 parameter [= n~/yo] 
# parameter [= 2 + K] 
r/ overpotential 

Suffices 
a anodic 
c cathodic 
eq equilibrium 
s separator 
S solution 

1. Introduction 

The flow-by configuration of porous electrodes is 
known to be more adapted to industrial applications 
than the flow-through configuration [1, 2]. Indeed the 
former allows large residence times, high conversions 
per pass, and uniform potential distributions if the 
electrodes are sufficiently long in the electrolyte flow 
direction and thin in the current flow direction. In 
previous studies [3-5] a few aspects of the application 
of nickel foams as materials for flow-by porous elec- 
trodes were considered. These studies were completed 
by a study of the electrode potential distribution 

in conditions of limiting current, i.e. of maximum 
productivity. 

The first deductions of theoretical potential distri- 
butions in highly conductive flow-by porous elec- 
trodes operating in the diffusional regime were due to 
Alkire and Ng for a cylindrical geometry [2] and to 
Tentorio and Casolo-Ginelli for a parallelepipedic 
geometry [6]. By assuming that only the current den- 
sity vector normal to the electrolyte flow has to be 
taken into account, they obtained simple analytical 
expressions giving the local electrode potential. The 
maximum potential drop is localized at the electrode 
entrance and it is considered as a design criterion, a 
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Fig. 1, Schematic view of  the parallelepipedic cell. 

conclusion which was confirmed by other approaches 
[7] and which led Kreysa [8] to propose an electrode of 
variable thickness. 

In order to improve the design of flow-by porous 
electrodes, the 2-dimensional electrode potential distri- 
bution was investigated by two groups [9, 10] at almost 
the same time. The analytical expressions obtained are 
complex and it seems that a one-dimensional approach 
similar to that of Tentorio [6] could be sufficient for 
the design of long thin electrodes [9] and/or for small 
conversions per pass [11]. These analyses suppose that 
the separator plane is an equipotential surface, but 
recent works on 2-dimensional potential distributions 
in the whole cell volume, and considering particularly 
the ohmic drop through the interelectrode space, 
made these analyses questionable. These works are, 
respectively, those ofMowla et al. [12] for a cylindrical 
geometry, of Fleischman et al. [13] for a parallel- 
epipedic geometry, and of Fedkiw et al. [14] for an 
electrode of variable thickness. Unfortunately, as the 
mathematical solutions are numerical, the influence of 
the different parameters on the potential distribution 
is not explicit, thus analytical models are preferred in 
spite of the necessary approximations. 

The present paper concerns a theoretical approach 
to the electrode potential distribution in flow-by 
porous electrodes, the geometry of which could be 
that of electrodes constructed with metallic foams. 
Analytical models which take into account the polariz- 
ation of the counter-electrode and the ohmic separ- 
ator resistance are proposed. An approximate, simply 
expressed model is shown to be adequate for the 
behavioural description of electrodes constructed with 
stacked sheets of metallic foams. 

2. Theoretical analysis for the diffusional regime 

Let us consider the case of a cell containing two flow- 

by porous electrodes separated as shown in Fig. 1 (the 
presence of a separator is at least a hydrodynamical 
necessity in order to guarantee the percolation of each 
porous electrode by a given electrolyte flow). The 
problem is to investigate the potential distribution 
within the cathode working in limiting diffusion con- 
ditions. The porous electrode matrix is assumed to be 
equipotential (metal potential ~bM = constant). 

Most of the theoretical models [2, 6, 9, 10] suppose 
that the separator plane (x = L) is at a constant 
solution potential, ~b s, a situation which neglects the 
ohmic drop of the interelectrode space but also admits 
the equipotentiality of the counter-electrode. This 
anode equipotentiality may be obtained with anodic 
gas evolution and/or when the anode penetration by 
the current lines is very small (highly concentrated 
anolyte, very rapid anodic reaction, porous electrode 
of large specific surface area). It seems that only 
Fedkiw [9] examined, in a simple manner, the influ- 
ence of the ohmic resistance of the interelectrode space 
on the potential distribution within porous electrodes. 

2.1. Potential distribution in the cell 

The solution potential, ~bs, in a porous electrode 
follows from the differential charge balance [6, 9, 
10, 15]: 

V2q~s ae . - lR (1) 
7 

where a e is the specific electrode surface area (per unit 
volume of electrode), iR the local reaction current 
density and 7 the apparent electrolyte conductivity in 
the pores of the electrode matrix. For a diffusion 
controlled simple cathodic reaction with z electrons, iR 
is related to the mean mass transfer coefficient, /~d, 
(assuming that the local mass transfer coefficient does 
not depend on the position and is equal to the mean 
value/~a), as: 

iR = -- zFkd C (2) 

where C represents the local concentration of the 
reacting ions. If  plug flow can be assumed in the 
porous electrode (no axial dispersion), the concen- 
tration only varies in the y direction of the electrolyte 
flow. That is: 

C(y )  = Co exp [--k.daey/fi] (3) 

where Co is the value of C at the electrode entrance 
(y  = 0) and fi is the mean electrolyte flow velocity 
based on the empty cross-sectional area. Thus, the 
Poisson Equation l, giving the cathodic solution 
potential, ~bSc, follows from (2) and (3): 

zFkdae Co 
V2qSs~ - exp [ -  Eda~y/~] (4a) 

?c 

In paraIMepipedic flow-by porous electrodes, ~bsc 
may vary with two coordinates x and y (2-dimensional 
problem) and solution of the following differential 
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equation becomes necessary: 

82q~so 8 q~s~ 
8x 2 + --@2 - ~ exp ( - f l y )  (4b) 

with 

z Fkd ae C 0 ]~dae 
= a n d  / 7 -  

Yc 

The continuity of the solution potential and of the 
current density at the boundary between the different 
parts of the cell means that the anodic polarization 
and the ohmic resistance of the separator influence the 
distribution of qSs. The distributions of the corre- 
sponding solution potentials ~bs~ and qSSa are respect- 
ively given by: 

in the separator 

a24~s~ 2 8 q~ss +-~-/ = 0 (5) 
8x 2 

in the porous anode 

82 4~s~ 82 ~bs~ a~ . 
- t~ ( 6 )  

8x2 + 8Y 2 7a 

where ae~, i~ and 7~ are the values of ae, iR, and 7 for 
the anode. 

The simultaneous solution of (4b), (5) and (6) leads 
to the distribution of q5 s in the cell, but the polariz- 
ation law of the anode (i.e. the relation between ~bs~ 
and ia) has to be known previously. Both cases of a 
small polarization of the anode and that of an equi- 
potential anode have been considered. 

2.2. Case of  a small anodic polarization 

Near the equilibrium potential the following linear 
approximation applies: 

zF 
ia(X' Y) -- R T  ion(X, y) x qa(X, y) (7) 

where ioa is the anodic exchange current density, and 
q~ = E, - Eoa is the overpotential. As the anodic 
polarization is small, the anolyte conversion through 
the anode is also small, thus io~ and the equilibrium 
potential, Eo~, can be considered as constant through- 
out the anode volume. If the anode matrix is equipoten- 
tial (potential qSM~ = constant), the introduction of 
the anodic solution potential, qSs~, in (7) leads to 

zF 
ia(X' Y) -- R T  i~ y) -- V] (8) 

q~(x, y) = e /TY~ [ x2 - L2 
v + ~ 0  (1 - 2 ~cL 

+ 2ef l  ~ 1 - ( - 1 ) " e  -ns~ 
Y0 ,----~ 22(22 + /~2) cos (2y) 

ch (2x) 

ch OoL) + Y~ sh (2L) th [2(L~ 
7~ 

where V is a constant which represents the difference 
r -- Eoa. 

The solution potentials qSs,, q~s~ and qSsc in the three 
elements of the cell are obtained from the following 
differential equations, respectively: 

in the anode (Ls < x < La) 

V2q~sa = K2(q~s~- V) 

with 

K2 _ aea Z2F ioa 
y~ R T  

(9) 

in the separator (L < x < Ls) 

V2q~ss = 0 (5) 

in the cathode (0 < x < L) 

V2qSsc = a exp ( - f ly )  (4) 

The limiting conditions of the problem correspond 
to the following hypothesis: 

- the walls of the cell are not conductive: 

( SqSs. ~ = (Sq$s~ ~ =0  (lOa) 
8x /x=La 8x /~=0 

- there is continuity of the solution potential 
and of the current density at the boundaries: 

~bs.(Ls, y) = qSs~(L S, y) (lOb) 

qSss(L, y) = ~bso(L, y) (10c) 

( 0qSs~ (lOd) 
8x /~=L~ 

(O ss) (,0e  
8x I,=L 

for the solution potential and: 

--~a (~bsa~ ~-- --'~s 
\ 8x Jx=L~ 

- Y o \  8x /,=L = -7s  

for the current density. 
- the two porous electrodes (anode and cathode) 

have the same length Y0, they are exactly in front of 
each other, and there is no loss of current out of the 
three elements at the limits y = 0 and y = Y0: 

by )y=O 8y JY=Yo 
(10f) 

As in [11] the solution of Equations 4, 5, 9 and 10 
uses a cosinus Fourier transformation and leads to the 
following analytical expression for q~sc(X, y): 

_1] 
- L)] 7a# th [/~(L~ - L~)] + y~2 coth [2(Ls - L)] 

Ya# th [#(L. - L~)] + ys2 th [2(L~ - L)] 

(1 la) 
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with 

2 = mr/y o and /~ = 2 + K. 

An approximate expression is easily obtained for 
~bs~ if it is supposed that the thickness of each cell 
element is small, thus neglecting the y derivate in 
Equations 4, 5 and 9. This expression is: 

I X  -- L 2 (L s - L) 
~bs~(X, y) - V = c~ e -a* ~ 7oL 7s 

-- ( ~ ) ( L ) c o t h [ K ( L ~ -  Ls)]] 

( l lb )  

2.3. Case o f  an equipotential anode 

If the polarization of the anode is negligible and/or if 
only a very small fraction of the anode volume is 
electrochemically active (small effectiveness) and/or if 
gas is evolved at the anode, the equipotentiality of the 
anodic separator side can be assumed: 

~bs,(L ~, y) = constant 

Then, the solution of Equations 4, 5, 10 by means of 
a cosinus Fourier transformation leads to the follow- 
ing rigorous expression of the solution potential 
within the cathode volume: 

Os~(X, y) c~ e ey0) V + ~ 0 ( 1  - 

+ 2~-~fi ~ 1 - ( - l f e  -p'~ 
Y0 n = 1 22 (22 ~_ j~2) 

X I ch (;ix) - 1 ] cos (22) 

ch (2L) + ?• sh (2L) th [2(Ls - L)] ] 
(12a) 

with 

2 = mr/y o and V =  C~s~(Ls, y ). 

As previously, an approximate solution can be 
obtained neglecting the terms ~2q~s/Oy2 in Equations 4 
and 5: 

$ s c ( X , Y ) -  V = e e  ey 2 ?s 

(12b) 

The ratio (L S - L)/?s represents the specific separator 
resistivity r s. Thus expression (12b) can also be applied 
to the case of  ion exchange membranes of small thick- 
ness. This expression was first proposed by Fedkiw [9] 
who considered a cell containing a porous cathode, a 
planar anode and in which the anolyte occupied the 
interelectrode space. 

2.4. Exist&g analytical models 

The models proposed by Fedkiw [9], Storck [10] and 
Tentorio [6] suppose that the counter-electrode polar- 
ization and the ohmic drop through the inter-electrode 
space are negligible. Thus they assume that the sol- 
ution potential ~bsc(L , y) at the boundary between the 
separator and the porous electrode is independent 
o fy .  

The solution obtained from Equation 4 in [10] is: 

e ey0) x2 - L2 
~bsc(X, y) = ~bsc(L, y) + ~ 0  (1 - 2 

~fl o~ 1 - ( - 1 ) " e  - ~ - v ~  

+ 2700 ~,  (f12 _}_ ~2)z~2 

(#&) 1 cos (2y) (13a) 

This expression was experimentally checked in [10] 
for the case of fixed bed electrodes of  spheres (bed 
porosity nearly 0.4). The solution deduced by Fedkiw 
[9] agrees sufficiently well with (13a) when the conver- 
sion per pass is higher than 30% and for geometrical 
ratio, Yo/L, smaller than 20. 

When the converson per pass is small [ll] and/or 
when the electrode geometrical ratio, yo/L, is high [9], 
the potential change along the electrode height is small 
and, thus, ~2~bSc/0y2 can be neglected in Equation 4. 
Thus, the following approximate solution, first 
obtained by Tentorio [6], is deduced: 

( X2-L2 ) 
~bsc(X,y) - V = ~ e -e-v 2 (13b) 

Expression (13b) was in agreement with the experi- 
mental results of Leroux [16] concerning flow-by elec- 
trodes constructed with expanded metal (porosity of 
about 0.8). 

2.5. Conclusions 

Table 1 summarizes the expressions obtained with the 
different models. Except for the sign and index, these 
expressions also apply to flow-by porous anodes. As 
the models suppose a small or negligible polarization 
of the counter-electrode, they are independent of the 
compared electrolyte flow direction in the two cell 
compartments (co-current or counter-current flow). 

It is interesting to note that in (1 lb), the solution 
potential, qSSc , results from three contributions which 
correspond respectively to: 

- the potential change through the cathode 
thickness, by the factor (x 2 - L2)/(27c) 

- the ohmic drop through the separator, by the 
factor (Ls - L)/?s 

- the anode polarization, by the factor (1/?a) • 
1/K coth [K(La - Ls)] 
The approximate Equation 12b corresponds to the 
case where the above last contribution is negligible; 
the approximate Equation 13b follows by neglecting 
the above two last contributions. The sign of the terms 
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Table 1. Analytical expressions giving the solution potential distribution ~bsr y) 

1. The plane x = L is equipotential 
�9 Storck et al. [10] 

ct . xZ _ L 2 2 OS~ 

Y) = Ss~(L,y) + 7 " ( 1  -- e ~ y o ) ~  + 2 - -  ~ ( x ,  
pyo Z Yo 

�9 Tentorio and Casolo-Ginelli [6] 

O f  

q~s~(x,y)-  V = ~ e  -ey 

2. The plane x = L is equipotential 
�9 Rigorous model 

q~s~(x,y) = V +  fl@0(1 - e-~Y~ 

1 ~fl(- -~ 1) ~22) 22e -r176 IF 7ffch (~()'x) 1 1 cos (2y) (13a) 
n=[ 

(~2 ~S c 2 q~Sc 
- - 4  8 f  

(13b) 

- L 2 7~ L(L _ L) ] + 2 ~ ~ 1 - ( - 1 ) "  e-r176 
2 7s Yo n=l 22(22 or- f12) 

�9 Approximate model 

ch (2x) 1 x - 1 cos (2y) (12a) 
ch (2L) + ) sh (2L) th [2(L~ - L)] 

Ys 

a2~s~ 
@2 '~ 8ax 2q~s~ 

[ x 2 - -  L2 Ye L(Ls - L ) ]  (12b) qSs~(X, y) - V = ~ e ~ 5 ~ 

3. Small anodic polarization 
�9 Rigorous model 

I X2 q~sc(X,y) = V + ~ 0 ( l  -- e /%) -2 L2 Yc L (L s - L) Yr L coth [K(L. - Ls) ] ]j + 2 --~fi x.., ~ 
7s ~a K Y0 ,=1 

ch (2x) 

ch (2L) + 7~ sh (2L) th [2(L~ - L)] 
Y~ 

- 1  

�9 Approximate model 

with 

F X2 L 2 
V ~y 0sc(x,Y)- = ~e [ 

k 

~/~ th [#(L~ - L~)] + y~2 coth [2(L~ - L)] 
Ya# th [/x(L~ -- L~)] + 7~2 th [2(L s - L)] 

2 O2Osc O ~bSc 
@2 8x 2 

(L~ - L) Y~ L coth [K(L~ - Ls)]~ 7r 
Y~ 7~ K J 

aea zF . ~iI2 
K =  7 ~ , o a  j 

1 - ( -  1)" e -e~~ 
~2(z~2 Or - f12) COS (~y) 

01a)  

(1 lb) 

in ( l lb)  shows that the anode polarization and the 
ohmic separator resistance have a negative influence 
on the uniformity of the solution potential distribu- 
tion within the porous cathode. In other words the 
uniformity of the potential distribution within the 
porous cathode is improved by reducing the above 
three contributions; this also makes the potential dis- 
tribution in the other cell elements more uniform. 

3. Application to the design of flow-by porous 
electrodes 

3.1. Presentation of the problem 

For any of the approximate models [Equation l lb; 
12b or 13b], the solution potential drop (i.e. the elec- 

trode potential drop) through the thickness of the 
porous cathode is expressed as: 

L 2 
A 0 s c ( Y )  = q~s~(L, y)  - ~bs~(0, y )  = e e ~ y -  2 

and is maximum at the entrance (y = 0). Thus, the 
separator resistivity and the anodic polarization only 
influence the longitudinal distribution of the solution 
potential in the porous cathode. 

As seen in Fig. 1 the maximum solution potential 
drop in the cathode, (A0so) . . . .  is then equal to the sum 
of the potential drop through the thickness at the 
entrance (y = 0) and of the potential drop all along 
the electrode length at the boundary with the separ- 
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Fig. 2. Variation of the maximum potential drop with conversion. 
Parameters:y 0 = 0.01m;L~ - L = 4 x 10-3m;~ = 0.0t m s - l ;  
z = 1; Co = 2 .5molm-3;  Yc = ?o = 20fY1 m - l ;  ?o/~/~ = 4.  

Equation 12b ( - - - ) ;  Equation 13b ( ). 

ator ( x  = L ) ,  that is: 

(Agbso)m.~ = [~bs~(L, Yo) - qSsc(L, 0)] 

+ [q sc(L, o) - q sc (0, o)] 

o r  

(A~sc)max ~- OSc( L, YO) -- OSc( 0, 0) 

This solution potential drop (A~sc)~ x is equal, but 
with an opposite sign, to the maximum extent of the 
cathode potential (AE~)m~x. 

For a cathodic reaction, the more negative electrode 
potential Ec(X , y) is at y = Y0 and near the separator 
(x = L); the less cathodic potential is situated at 
the electrode entrance (y  = 0) and near the non- 
conducting cell wall (x = 0). 

As the experimental cell used in the experiments [17] 
did not allow measurement of the counter-electrode 
(anode) potentials, the model which assumes a small 
anodic polarization could not be experimentally 
checked. This is the reason why, in view of [17], only 
the models which consider an equipotential counter- 
electrode will be compared below. 

3.2. Comparison of  the maximum potential drops 

3.2.2. Influence of  the separator. In order to illustrate 
the influence of the separator, the maximum potential 
drops, (AEc) . . . .  obtained using (12b) and (13b) were 
compared. Figure 2 shows such a comparison as a 
function of the conversion X, for two values of the 
geometrical ratio yo/L of the porous cathode. These 
two values chosen for yo/L correspond to those which 
were obtained with stacks of nickel foam (the foam 
exists in the form of sheets approximately 0.25 cm 

0.4 

0 / 

y~ L = 40 ~ /  / 

yo/L = 1 / 

0 0.5 

Conversion X 

Fig. 3. Variation of the maximum potential drop with the conver- 
sion: comparison between the rigorous and the approximate models 
taking the separator influence into account. Same parameters as in 
Fig. 2. Equation 12a ( ); Equation 12b ( - - - ) .  

thick) located behind a ceramic separator 0.4 cm thick 
[17]. It is clear from Fig. 2 that the separator influence 
cannot be neglected a priori; in the present example~ 
deviations reaching 500% are observed between (12b) 
and (13b) when X is higher than 0.6. 

The comparison of Equations 12b and t3b shows 
indeed that the separator influence in the calculation 
of (AE)m,x can only be neglected if: 

- L _ ( 1 5 )  

27~ 7~ 

i.e., when: 
- the conversion per pass X is small 
- the separator is thinner than the porous 

electrode 
- the porosity ~ of the electrode is small [for a 

bed of spherical conducting grains (~ ~ 0.4) the ratio 
70/7~ is nearly 3.5]. 
This agrees with the experimental results of Leroux 
[16] and Enriquez-Granados [t 2, 18] who showed that 
the solution potential near the separator boundary 
(x = L) was constant along the electrode height. With 
porous electrodes made of nickel foam (high porosity, 
thin electrodes), the separator influence cannot be 
neglected [17]. 

In Fig. 2 it is seen that the maximum potential drop 
increases rapidly with X; this is due to the exponential 
function existing in the plug flow model. Thus, when 
the maximum allowable electrode potential drop is a 
limiting factor, a single electrochemical reactor with- 
out recycling would not permit a high conversion. 

3.2.3. Comparison of  the models considering the influ- 
ence of  the separator. Figure 3 represents, as a function 
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Fig. 4. Longitudinal distribution of  q~sc and of  the potential drop 
across the electrode thickness, calculated from the models which 
take the separator influence into account. Parameters: the same as 
in Figs 2-3 and L = 0.0045 m; X = 0.75. 

of X and for three values of yo/L, the variations of 
JAEmaxJ deduced from (12a) and (12b). In Equation 
12a, the Fourier series is calculated up to n = 50. The 
deviations between the rigorous (Equation 12a) and 
the approximate (Equation 12b) models increase when 
the conversion increases and/or when the geometrical 
ratio yo/L decreases. As these deviations are smaller 
than 25%, Equation 12b could be seen as acceptable 
for high yo/L values (case of metallic foam). Figure 4 
shows longitudinal solution potential distributions in 
the plane x = L; these were calculated from 
Equations 12a and 12b for a stack of two sheets of 
100ppi (pores per inch) nickel foam. Figure 4 also 
shows the variations of the overall potential drop 
across the stack thickness, Aq~sc(Y), with the longi- 
tudinal coordinate y. It is seen that the deviations 
between the models are essentially located at the elec- 
trode extremities. As Equation 12b is simple, it could 
be useful for the design of flow-by porous electrodes 
having a high geometrical ratio yo/L and associated 
with an equipotential counter-electrode. 

3.3. Application to the design of flow-by porous 
electrodes 

Figure 5 shows schematically a two-compartment par- 
allelepipedic cell which could be the unit element of 
a filter-press system. In this case a planar counter- 
electrode (anode) is assumed. The distributions of 
the solution potential across the cell thickness are 
represented according to the approximate model 
which neglects the anodic polarization. 

In an industrial application, a given cell productivity 
per unit time is generally desired jointly with a high 
selectivity, in other words, avoiding secondary reac- 

( ~ M a  - 

l 
G 

q)sclL,yo) (~) 

3Eo 
max 

Q~sc(O,O) - - -  _ 

,v~o -~ .... ,, 
L a 

3rous 
~thode 

' ~ Q I I  
t v 

J k 

L s i 

x 

Fig. 5. Representation of the solution potential distribution across 
the cell thickness. 

tions. This selectivity depends on the extent of the 
electrode potential variation range, AE, one limit of 
which is the local electrode potential E(0, 0). The 
potential E(0, 0) may be fixed a priori on a thermo- 
dynamical and kinetic basis. 

The specific productivity, P, represents the amount 
of matter formed (or produced) per unit time and 
volume of the porous electrode, that is: 

Co-  Cs P = Q v - -  - COX-- (16) 
VR Y0 

where Co and Cs are the entrance and exit concen- 
tration respectively, Qv(= ilL() is the flow-rate, and 
VR is the electrode volume. 

According to the approximate model [Equation 
12b], the maximum electrode potential drop, (AE) . . . .  
is given by: 

(AE)max = -zFC~ - X) I2~  + Xr~; 

(12c) 

As the electrode material and the separator are gener- 
ally chosen a priori, then the minimum electrode 
volume (Ldyo) which would be suited for the 
required production results from a compromise 
between the above expressions for P, Qv and (AE)max 

and mass transfer correlations such as those given in 
[5] for nickel foam electrodes. The above consider- 
ations essentially apply for limiting current conditions 
at any point of the electrode. 

According to the Nernst equation, the equilibrium 
potential at y, where the concentration is C(y), is 
expressed as: 

R~ C(y) 
Eeq ( y )  -= g 0 ~- - ~  In CA 
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Fig. 6. Variation of the equilibrium potential E~q along the electrode. 

which becomes, assuming plug flow: 

Eeq(Y ) = Eeq(Y = 0) 4- ~ in (1 - X )  

Then the variation of Eeq along y may be significant. 
Figure 6 shows the current density against the elec- 

trode potential curves which correspond to differential 
elements of electrode situated at different distances 
along this electrode. As indicated, the equilibrium 
potential varies along y. The zone of mixed control 
which appears in the overall curve is particularly 
interesting because: 

- there is a one to one relation between current 
intensity and potential 

- with respect to the electrolyte flow direction, 
the upward electrode region works in the kinetic con- 
trol regime while the downward region works in limit- 
ing current conditions. 

Such a mixed control was observed during experi- 
ments with nickel foam electrodes [17]; these seem well 
suited to industrial operating conditions if a high 
electrode productivity is required. 

4. Conclusions 

The comparison of  theoretical models shows that the 
solution potential distribution within the porous elec- 
trode of a two-compartment cell depends greatly on 
the ohmic resistance of  the separator, when the con- 
version per pass is high and/or when the thickness of 
the porous electrode is small. For  flow-by porous 
electrodes made of  thin porous materials (metallic 
foams, for example), the influence of the separator has 
to be taken into account. Up to conversion of  about 
90% the approximate model does not differ from the 
corresponding rigorous model, and thus can be use- 
fully used for the design of flow-by porous electrodes 
working in conditions of high productivity and in cells 

such that the counter-electrode potential can be con- 
sidered as constant. The use of the model leads to the 
porous electrode volume for a one-pass operation. 

The cases of reactors in series and/or operating with 
recycle was not considered here in spite of  the interest 
in such situations for the achievement of a uniform 
potential distribution and a high conversion. However 
the extension of the approximate model to such cases 
would not present mathematical difficulties. 

Finally, it has to be noted in Equation 12b, which 
corresponds to the case of a small counter-electrode 
polarization, that the simultaneous operation of the 
two electrodes of  the cell in conditions of  high produc- 
tivity has to be avoided. Indeed the polarization of 
each electrode influences the potential distribution in 
the other electrode. In the case where high conversions 
in the porous electrode would be needed, a counter- 
electrode working at constant potential would be 
recommended. The next paper [17], which reports 
experimental work on flow-by porous electrodes of 
nickel foam, confirms the present theoretical analysis. 
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Appendix 

If  r designates the difference ~bs -  V = ~b s - 
[q~Ma - -  E0a] ,  then the problem is to solve the following 
system of differential equations: 

V2r = e e  -~y for 0 < x < L 

V2tpss = 0 L < x < L~ (A1) 

V2g, sa 2 = K ~/Sa Ls < x < La 

The cosinus Fourier transform is defined by: 

;~0 Os(X, y) cos [nrcy/yo] dy = F(x,  n) 

with n = 1 , 2 , 3  . . . .  
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Fa(x, n) Cl 
22 

+ 

ch [#(L a - x)]/ch [2(L~ - L)] 

E ( ch #(La -- Ls) c o t h ( 2 L )  th[2(L~ - L)] + 

~ sh [#(L~ - Ls)] coth (2L) + 7• th [2(L~ -- L)] 
7~ 

(A4) 

Since 

F (c320s'~ 
\ a / /  \ gY /y=yo \ gY/y=0 

n2 ~2 
yo 2 F[0s(X'  Y)] 

the association of  Equat ions  A1 with the boundary  
condit ions (Equat ion 10f) leads to the following 
system: 

d2Fo(x, n) 22Fc(X, rt) 
dx 2 

- f12 + 22 [1  - ( - 1 )  ~ = C~ 

d2Fs(x, n) 22Fs(x, n) = 0 (A2) 
dx 2 

d 2 F a (x, n) tt 2 F a (X, n) = 0 
dx 2 

with 

2 = n~/yo; C1 = [1 -- ( - -  1) n e -'y~ 

ct/~ and # = K +  2 x fi2 + 22 

The general solution of  (A2) is: 

Fc(x,n) = A l e  -;'~ + B l e  ;x - C1/22] 

Fs(x,n) = A2e -;~x + B2e ;x 

F~(x, n) = A3 e -F'x + B3 e ~ 

(A3) 

The coefficients A~, B~, A2, 92, A3, B 3 are determined 
according to boundary  conditions (Equat ions 10a to 
10e). 

Then  it follows: 

C1 
Fc(x, n) - 22 

X ch (2x) - 1 1 

ch (2L) + YA sh (2L) th [2(L~ - L)IZ J 7s 

C1 
F~(x, n) - 22 

• I sh [2(L - x)] -- ch [2(L_ --  x).__]] th [2(L~ -- L)]Z- 

coth (2L) + th [2(Ls L)]Z 
7c 

~ #  th [tt(L a -- L~)] + y~2 coth [2(L~ - L)] 

with 

Z 
TaP th [~(L a --  L~)] + ?~2 th [2(L~ - L)] 

Ca #2 ~# e-fiY~ - -  -I" 2 2  [ 1  - -  ( - -  l) n 

2 = nrc/y o and # = 2 + K 

The inverse Fourier  t ransform is: 

2 i 1 f ( x ,  O) + F(x, n) cos (2y) 
~s(X, y) Yo Yo i 

As 

F(x, 0) = lim F(x, n) 

it follows that  

F~(x, 0) = (1 - e ~yo) Ct[ 
x 2 L 2 

L 2 

(A5) 

7~ L(Ls - L) 

YaTcLc~ [ K ( L a -  L s ] l  
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A c k n o w l e d g e m e n t s  

from which Equat ion 1 la  is deduced for the cathodic 
solution potential  distribution. 

In the more  simple case where the anodic solution 
potential  is constant  at x = L~ (see section 2.4), 
the solution using the cosinus Fourier  t ransform is 
similar. 


